Todo comenzó un día cualquiera, mientras revisaba un reporte de cobertura de pruebas generado por Coverlet para un proyecto en .NET. Me quedé fascinado por el nivel de detalle y claridad que proporcionaba: saber exactamente qué partes del código estaban cubiertas por las pruebas, y cuáles no. Fue entonces cuando me pregunté: ¿Y si pudiera tener algo así en mi proyecto de Android con Kotlin y Jetpack Compose?
La Chispa Inicial ✨
Como desarrollador, siempre busco mejorar la calidad de mi código, y contar con herramientas que me permitan medir la cobertura de pruebas es clave. Después de una rápida búsqueda, me topé con **JaCoCo**, una herramienta muy popular para medir cobertura de código en proyectos Java y Kotlin. ¡Lo mejor de todo es que es compatible con Android Studio!
Mi objetivo estaba claro: debía integrar JaCoCo en mi proyecto de Android para tener reportes detallados de cobertura, tal como lo había visto en Coverlet.
El Desafío: Configurar JaCoCo en un Proyecto Android 🛠️
El proyecto con el que estaba trabajando no era cualquier proyecto. Era una aplicación moderna construida con **Jetpack Compose** y configurada con **Gradle Kotlin DSL** (`build.gradle.kts`). Sabía que el camino no sería tan sencillo como copiar y pegar configuraciones estándar, pero estaba listo para el reto.
Paso 1: Activar el Plugin de JaCoCo 🔌
Lo primero que hice fue agregar el plugin de JaCoCo en el archivo `build.gradle.kts` de mi módulo `app`. Esta línea mágica activó el soporte para JaCoCo:
plugins {
id("jacoco")
}
Con esto, JaCoCo ya estaba listo para entrar en acción, pero aún necesitaba configurarlo para que generara los reportes que quería.
Paso 2: Configurando los Reportes de Cobertura ⚙️
El siguiente paso fue añadir una tarea personalizada en el archivo build.gradle.kts. Esta tarea se encargaría de generar los reportes en formato HTML y XML después de ejecutar las pruebas unitarias:
tasks.register("jacocoTestReport", JacocoReport::class) {
dependsOn("testDebugUnitTest") // Ejecuta las pruebas antes del reporte
reports {
xml.required.set(true)
html.required.set(true)
}
val debugTree = fileTree("${buildDir}/intermediates/javac/debug") {
include("**/*.class")
exclude(
"**/R.class",
"**/R$*.class",
"**/BuildConfig.*",
"**/Manifest*.*",
"**/*Test*.*"
)
}
val kotlinDebugTree = fileTree("${buildDir}/tmp/kotlin-classes/debug") {
exclude(
"**/R.class",
"**/R$*.class",
"**/BuildConfig.*",
"**/Manifest*.*",
"**/*Test*.*"
)
}
classDirectories.setFrom(files(debugTree, kotlinDebugTree))
sourceDirectories.setFrom(files("src/main/java"))
executionData.setFrom(files("${buildDir}/jacoco/testDebugUnitTest.exec"))
}
💡 Un consejo extra: Asegúrate de que las rutas en classDirectories, sourceDirectories y executionData coincidan con la estructura de tu proyecto.
Paso 3: Ejecutar las Pruebas y Generar el Reporte 🚀
Con todo configurado, llegó el momento de la verdad. Corrí el comando para ejecutar las pruebas unitarias:
./gradlew testDebugUnitTest
Luego, generé el reporte de cobertura con:
./gradlew jacocoTestReport
Cuando abrí el archivo index.html en la carpeta app/build/reports/jacoco/jacocoTestReport/html, me sentí como un explorador descubriendo un nuevo mundo. Ahí estaba: un desglose detallado de la cobertura de cada clase, método y línea de mi proyecto. ¡Una verdadera radiografía de mi código! 🤩
El Resultado: Visualizando el Impacto 📊
JaCoCo no solo me dio una visión clara de cuánto de mi código estaba cubierto por pruebas, sino que también me motivó a mejorar. Podía ver exactamente qué partes necesitaban más atención y dónde estaba fallando mi estrategia de pruebas. Esta información visual es invaluable para tomar decisiones informadas sobre dónde enfocar mis esfuerzos de testing.
Conclusión: De Coverlet a JaCoCo, un Camino Valioso 🏆
Si alguna vez has disfrutado de los reportes de cobertura de Coverlet en proyectos .NET, te encantará saber que puedes lograr algo similar en proyectos de Android con Kotlin. JaCoCo es una herramienta poderosa que, con un poco de configuración, puede integrarse perfectamente en tu flujo de trabajo, brindándote la visibilidad que necesitas para escribir código más robusto y confiable. ¡Anímate a probarlo y descubre el impacto en la calidad de tu aplicación.
Comentarios
Publicar un comentario